广告
加载中

摩尔线程 不够坦诚

李彦 2025-12-26 11:17
李彦 2025/12/26 11:17

邦小白快读

EN
全文速览

摩尔线程的IPO表现及核心争议

1.摩尔线程IPO股价从114.28元飙升至940元以上,涨幅超700%,但市值与收入不匹配,2025年预计收入77亿至105亿元,市值却达1.2万亿元,显示市场对“国产英伟达”的高期待。

2.创始人张建中从英伟达离职创立公司,但李丰身份争议引发质疑:招股书未列其为联合创始人,但官方场合曾称其职务,理财风波中公司公告将75亿元募集资金用于理财,解释为短期闲置资金管理,芯片设计周期长(3-5年),成本高(7nm芯片约15亿元)。

业务结构及风险提示

1.公司收入高度集中:2025年上半年AI智算集群占收入79.12%,前两大客户贡献超87%收入,客户集中风险大。

2.产品问题:未披露关键参数如算力、访存带宽,仅暗示逼近英伟达,生态薄弱,出货量仅6128片,远低于英伟达的119万片。

3.风险点:制程依赖中芯国际(可能落后于台积电4nm),生态建设漫长,研发费用率309.9%,但资金体量小。

品牌营销及产品研发亮点

1.品牌故事:创始人张建中为英伟达前高管,离职创立摩尔线程,强调“国产英伟达”血统,上市后身价超300亿元,增强品牌吸引力。

2.产品研发:推出全功能GPU架构“花港”,支持全精度计算,算力密度提升50%;规划AI训练芯片“华山”和图形芯片“庐山”,在DeepSeek R1模型推理表现达Prefill吞吐4000tokens/s、Decode吞吐1000 tokens/s。

消费趋势及用户行为观察

1.消费趋势:AI算力需求增长,国产替代受美国出口管制推动,摩尔线程瞄准信创市场,客户以工程化、项目化交付为主。

2.用户行为:收入高度依赖AI智算集群(占近80%),反映当前市场对集群级算力的高需求,但图形业务占比小(不足6%),显示商业化优先级。

政策解读及市场机会

1.政策影响:美国出口管制促国产GPU机会,张建中离职创立摩尔线程响应此趋势,增长市场在AI智算集群(现实收入来源)。

2.消费需求变化:推理算力上行、边缘计算需求波动,带来结构性机会,摩尔线程全功能GPU提供适配弹性。

风险提示及事件应对

1.风险:客户高度集中(前五大客户占98%以上),采购放缓或项目终止将导致收入剧烈波动;生态不足(出货量仅6128片),难以竞争。

2.事件应对:理财风波中公司公告解释资金管理为合理做法(成本高、周期长),可学习点包括生态建设(如MUSA开发者计划)。

3.机会提示:国产替代窗口期,合作方式如项目交付,扶持政策隐含在信创市场优先。

产品生产及设计需求

1.芯片设计流程:从需求到商用需3-5年,关键节点费用高,7nm芯片设计成本约15亿元,5nm约29.5亿元,生产依赖中芯国际,制程可能落后。

2.设计启示:摩尔线程强调全功能GPU架构,但实际生产资源集中投入AI智算集群(占成本88.31%),需优化资源分配。

商业机会及数字化启示

1.商业机会:国产化需求(美国管制促替代),AI智算板卡业务成本低(占成本4.21%)、收入贡献14.00%,显示潜在增长点。

2.推进电商启示:生态建设如MUSA开发者中心,启示工厂需加强第三方合作和适配,以应对封闭交付环境。

行业发展趋势及新技术

1.行业趋势:中国GPU市场英伟达占62%份额,国产厂商如华为昇腾(17%)、摩尔线程崛起,但出货量差距大(摩尔线程仅6128片),生态鸿沟明显。

2.新技术:摩尔线程推出“花港”GPU架构,算力密度提升50%;发布“夸娥”万卡智算集群,指标包括10 ExaFlops浮点能力、训练扩展效率95%。

客户痛点及解决方案

1.客户痛点:生态不足导致被动兼容,出货量小难覆盖多样负载;制程落后影响性能逼近;客户高度集中带来风险。

2.解决方案:公司建设MUSA生态中心,发布开发者计划吸引人才共建;资金管理提高效率,应对长周期成本。

平台需求及最新做法

1.商业对平台需求:算力交付需集群解决方案(如AI智算集群),摩尔线程客户以项目化交付为主,平台需支持定制化算力项目。

2.平台做法:推出“夸娥”万卡智算集群,披露浮点能力等指标,但未详述能耗和互联细节;平台招商通过开发者大会宣发生态。

运营管理及风险规避

1.运营管理:收入高度集中(AI集群占主导),需多样化业务;信息披露不足(关键参数未公开),引发质疑。

2.风险规避:理财风波处理展示资金动态管理;制程依赖风险(中芯国际7nm/5nm),需规避性能落差;生态建设缓慢,风向规避应聚焦真实负载优化。

产业新动向及新问题

1.产业动向:国产GPU厂商(摩尔线程、寒武纪、沐曦)市值高但收入低,反映“国运估值”;摩尔线程IPO后争议凸显披露问题。

2.新问题:生态鸿沟(CUDA生态优势大,MUSA出货量小);客户集中度高(前两大客户占87%收入);制程落后与性能逼近矛盾。

政策法规建议及商业模式

1.政策建议:美国出口管制启示加强国产芯片研发;法规需完善虚拟资产追偿(如李丰争议)。

2.商业模式:收入结构集中(AI集群占79.12%),毛利率不高;商业模式类似英伟达(数据中心业务近90%),但需提升产品力与生态影响力。

返回默认

声明:快读内容全程由AI生成,请注意甄别信息。如您发现问题,请发送邮件至 run@ebrun.com 。

我是 品牌商 卖家 工厂 服务商 平台商 研究者 帮我再读一遍。

Quick Summary

Moore Threads' IPO Performance and Core Controversies

1. Moore Threads' IPO share price surged from 114.28 yuan to over 940 yuan, a gain exceeding 700%. However, its market valuation appears mismatched with revenue projections. While the company forecasts 2025 revenue between 7.7 and 10.5 billion yuan, its market capitalization has reached 1.2 trillion yuan, indicating high market expectations for a "domestic Nvidia."

2. Founder Zhang Jianzhong left Nvidia to establish the company. However, controversy surrounding Li Feng's role has raised questions: the prospectus does not list him as a co-founder, yet he was previously referred to as holding an official position. A separate controversy involved the company announcing it would use 7.5 billion yuan of raised capital for wealth management products, which was explained as short-term management of idle funds, citing the long chip design cycle (3-5 years) and high costs (approximately 1.5 billion yuan for a 7nm chip).

Business Structure and Risk Warnings

1. The company's revenue is highly concentrated: in the first half of 2025, AI computing clusters accounted for 79.12% of revenue, with the top two customers contributing over 87%, indicating significant customer concentration risk.

2. Product concerns: Key parameters like computing power and memory bandwidth are not disclosed, with only hints that performance is close to Nvidia's. The ecosystem is weak, with a shipment volume of only 6,128 units, far below Nvidia's 1.19 million units.

3. Risk factors: Manufacturing relies on SMIC, whose process technology may lag behind TSMC's 4nm. Ecosystem development is a lengthy process, and while the R&D expense ratio is 309.9%, the absolute funding scale is relatively small.

Brand Marketing and Product Development Highlights

1. Brand Story: Founder Zhang Jianzhong is a former Nvidia executive who left to establish Moore Threads, emphasizing its "domestic Nvidia" heritage. His post-IPO net worth exceeding 30 billion yuan enhances the brand's appeal.

2. Product R&D: The company launched the "Huagang" full-feature GPU architecture, supporting full-precision computation and increasing compute density by 50%. It has plans for the "Huashan" AI training chip and the "Lushan" graphics chip. The DeepSeek R1 model inference performance reportedly reaches 4000 tokens/s for Prefill throughput and 1000 tokens/s for Decode throughput.

Consumer Trends and User Behavior Observations

1. Consumer Trends: Growing demand for AI computing power and U.S. export controls are driving domestic substitution. Moore Threads targets the IT application innovation (Xinchuang) market, with customers primarily served through engineering and project-based deliveries.

2. User Behavior: Revenue is highly dependent on AI computing clusters (nearly 80%), reflecting strong current market demand for cluster-level computing power. However, the graphics business contributes less than 6%, indicating commercialization priorities.

Policy Interpretation and Market Opportunities

1. Policy Impact: U.S. export controls are creating opportunities for domestic GPUs. Zhang Jianzhong's departure from Nvidia to found Moore Threads aligns with this trend, with growth primarily in AI computing clusters, the main current revenue source.

2. Shifting Demand: Rising demand for inference computing power and fluctuating needs for edge computing present structural opportunities. Moore Threads' full-feature GPUs offer adaptable solutions.

Risk Warnings and Incident Response

1. Risks: Extreme customer concentration (top five customers account for over 98% of revenue) means any slowdown in procurement or project termination could cause severe revenue fluctuations. A weak ecosystem (only 6,128 units shipped) makes competition difficult.

2. Incident Response: The company defended its wealth management activities as a reasonable practice for managing high costs and long cycles. A key learning point is the need for ecosystem building, exemplified by initiatives like the MUSA developer program.

3. Opportunity Note: The domestic substitution window offers project-based delivery collaboration opportunities, with implicit policy support within the Xinchuang market.

Product Production and Design Requirements

1. Chip Design Process: The journey from requirement to commercial deployment takes 3-5 years, with high costs at key stages. Designing a 7nm chip costs approximately 1.5 billion yuan, and a 5nm chip about 2.95 billion yuan. Production relies on SMIC, whose process technology may lag.

2. Design Insights: While Moore Threads emphasizes its full-feature GPU architecture, actual production resources are heavily concentrated on AI computing clusters (88.31% of cost), suggesting a need for optimized resource allocation.

Business Opportunities and Digitalization Insights

1. Business Opportunities: Domestic substitution demand (driven by U.S. controls) presents opportunities. The AI computing board business has low costs (4.21% of total) but contributes 14.00% to revenue, indicating a potential growth area.

2. E-commerce Implications: Ecosystem initiatives like the MUSA Developer Center highlight the need for factories to strengthen third-party partnerships and adaptability to operate effectively in project-based delivery environments.

Industry Trends and New Technologies

1. Industry Trends: Nvidia dominates the Chinese GPU market with a 62% share, but domestic players like Huawei's Ascend (17%) and Moore Threads are emerging. However, the shipment gap is vast (Moore Threads: 6,128 units), and the ecosystem divide is significant.

2. New Technologies: Moore Threads introduced the "Huagang" GPU architecture, boosting compute density by 50%, and launched the "Kua E" 10,000-card AI cluster, claiming 10 ExaFlops of FP8 performance and 95% training scaling efficiency.

Customer Pain Points and Solutions

1. Customer Pain Points: A weak ecosystem leads to passive compatibility efforts; small shipment volumes hinder coverage of diverse workloads; reliance on less advanced manufacturing processes impacts performance parity; high customer concentration poses risks.

2. Solutions: The company is building the MUSA ecosystem center and a developer program to attract talent for co-development. Efficient capital management is employed to handle long-cycle costs.

Platform Requirements and Latest Practices

1. Business Demands on Platforms: Computing power delivery requires cluster solutions (e.g., AI computing clusters). As Moore Threads' business is primarily project-based deliveries, platforms need to support customized computing projects.

2. Platform Practices: The launch of the "Kua E" 10,000-card cluster included metrics like floating-point performance, but omitted details on power consumption and interconnect specifics. Platform promotion involves ecosystem marketing through developer conferences.

Operations Management and Risk Mitigation

1. Operations Management: Revenue is highly concentrated (dominated by AI clusters), necessitating business diversification. Insufficient information disclosure (withholding key parameters) has drawn criticism.

2. Risk Mitigation: The handling of the wealth management controversy demonstrated dynamic capital management. Risks associated with process technology reliance (SMIC's 7nm/5nm) require managing performance gaps. Slow ecosystem development means risk avoidance should focus on optimizing for real-world workloads.

Industry Developments and New Issues

1. Industry Developments: Domestic GPU makers (Moore Threads, Cambricon, MetaX) have high valuations but low revenues, reflecting a "national destiny valuation" premium. Controversies post-Moore Threads' IPO highlight disclosure issues.

2. New Issues: A significant ecosystem gap exists (CUDA's dominance vs. MUSA's small shipment volume); high customer concentration (top two clients contribute 87% of revenue); and the contradiction between potentially落后 manufacturing processes and claims of performance parity.

Policy Recommendations and Business Models

1. Policy Recommendations: U.S. export controls underscore the need to strengthen domestic chip R&D. Regulations need refinement regarding virtual asset recovery, as seen in the Li Feng controversy.

2. Business Model: The revenue structure is concentrated (AI clusters: 79.12%) with modest gross margins. While the model resembles Nvidia's (nearly 90% data center business), product competitiveness and ecosystem influence need enhancement.

Disclaimer: The "Quick Summary" content is entirely generated by AI. Please exercise discretion when interpreting the information. For issues or corrections, please email run@ebrun.com .

I am a Brand Seller Factory Service Provider Marketplace Seller Researcher Read it again.

顶着“国产GPU第一股”光环、“中一股即可躺赚28万元”的摩尔线程,掀起了2025年最后一轮科技股的狂欢。上市一周,公司股价从114.28元的发行价一度飙升至940元以上,涨幅超过700%。

12天后,沐曦IPO将摩尔线程的剧本复制粘贴了一遍。然后A股年末最具标志性的也最魔幻的现象出现了:寒武纪、沐曦、摩尔线程三家芯片公司2025年预计收入合计在77亿元至105亿元之间,但市值合计竟高达近1.2万亿元。这显然不是按收入或利润估值,是按“国运”估值,市场对“国产英伟达”的期待,已被推至一个前所未有的高度。

提起“国产英伟达”,摩尔线程从“血统”上无疑是最纯正的。

摩尔线程创始人张建中,在英伟达工作超过了14年。2020年,美国开始实施对先进计算和半导体技术的严格出口管制,这让早已摸透GPU产业命脉的张建中看到了国产化的机会。虽然当时已经身居英伟达全球副总裁、中国区总经理的高位,张建中还是向黄仁勋提出了离职,和三位同事——前英伟达市场生态高级总监周苑、前英伟达GPU架构师张钰勃和前英伟达销售总监王东创立了摩尔线程,正式开启了英伟达的复刻之路。

五年完成IPO,抛开“造芯”,摩尔线程至少在“造富”的进程上堪称梦幻,张建中在上市当天身价就超过了300亿元,这是他给黄仁勋打一辈子工都可能获得不了的财富。而就在摩尔线程还在享受这场“资本盛宴”的当口,一则突如其来的传言和一纸官方公告,瞬间将摩尔线程从聚光灯下拉入了审视与质疑的漩涡。

1.身份谜团与理财风波

首先是关于创始团队成员李丰的争议。

一方面,多家媒体与社交平台披露,“摩尔线程联合创始人”“摩尔学院负责人”李丰早年曾深度参与加密货币与区块链相关项目“收割韭菜”,并因投资借贷问题与他人产生1500比特币的债务纠纷。由于虚拟资产在法律界定和跨境追偿层面存在现实难度,相关问题悬而未决,他也因此在业内留下相当大的争议,以致于摩尔线程上市,他立刻就被“曝晒”到公众面前。

但摩尔线程对李丰“联合创始人”的身份明面上是不承认的,比如在招股书中,李丰并未出现在董事、高管或核心技术人员名单中,也未持有任何股份,为此摩尔线程还投诉了一些将李丰定性为“联合创始人”的文章。

但在一些官方场合,比如在江苏国资委网站上宣传苏州市属国资系统举办AI专题授课暨第六期 “国资大讲堂”的文章中,李丰的职务赫然以“摩尔线程联合创始人、摩尔学院院长”展示。

更耐人寻味的是,在2023年7月举办的首届全国先进计算技术创新大赛启动会上,转场介绍页面介绍李丰为“摩尔线程智能科技有限责任公司 联合创始人”,李丰在上台时瞥了一眼但并未明确提出反驳,但在他演讲PPT的主页面只写了“摩尔学院 李丰”。

上面两个场合说李丰本人对于主办方在宣传口径把自己title弄错不知情,显然有些不合理,所以尽管摩尔线程矢口否认,但外界对于李丰是否为“摩尔线程联合创始人” 仍存怀疑:比如是否他真是联合创始人,但碍于自身争议怕影响公司上市进程,而与公司之前暗地里达成了某种协议?

不过,这件事或者李丰个人与公司当前业务推进关联或许不大,真正将摩尔线程推向舆论漩涡的是,是一则关于将IPO募集资金用于理财的公告——摩尔线程要将IPO募集所得的资金用于理财。这似乎与此前企业对募集资金用途的表述并不一致,也与市场对其“加码研发、抢占国产算力窗口期”的高预期形成了明显反差。

摩尔线程在公告中回应称,75亿元是现金管理额度上限,实际金额将明显小于该数字,且随着项目推进动态减少。

这一点确实得为摩尔线程说两句。

一颗芯片从设计到商用的全流程涉及:需求→架构→设计→流片→封装→测试→认证→量产→商用。整个周期可能长达3-5年,每到关键节点才会产生相关费用,且根据国际商业战略公司(IBS)的数据,设计一款7nm芯片的平均成本约为2.17亿美元(约合15亿元人民币),5nm芯片的设计成本约为4.16亿美元(约合29.5亿元人民币)。

所以摩尔线程募集得到的75亿不可能在短期内一次性花完,用于理财其实是合理的,只是在上市之后立刻宣布给公众的情绪上造成了巨大的落差。实际上,在资金实际使用前,上市公司将这部分暂时闲置资金进行保本型现金管理,是提高资金使用效率的惯常做法。

2.GPU全才还是“样样通样样松”?

作为国产全功能GPU的“独苗”,摩尔线程走的是跟英伟达几乎一致的路线——一条技术门槛最高、最具通用性,同时“故事性”最强的路线。

全功能GPU的核心价值在于统一架构与软件生态的长期可扩展性。从战略层面看,全场景布局也为摩尔线程保留了潜在的需求回旋余地。当前AI智算集群是最现实的收入来源,但算力需求本身仍处于快速演化之中:推理算力上行、边缘计算与专业图形需求波动,都可能在未来阶段释放结构性机会。相比单一场景芯片,全功能GPU在客户结构、应用形态与产品组合上的适配弹性更高。

但从主营业务的收入结构与成本结构对照来看,强调全功能GPU能力的摩尔线程营收结构依然集中度较高。

2025年1-6月,AI智算集群贡献了其79.12%的主营收入,也占据了88.31%的成本。对比之下,AI智算板卡贡献的收入比例达14.00%,但占据的成本比例仅4.21%。也就是说,公司绝大部分资源都集中投入在集群级算力解决方案上,这一业务虽毛利率不高,却构成了摩尔线程的营收命脉。

在AI智算业务外,包括专业图形加速业务、桌面级图形加速以及SoC在内的其他业务,整体体量都较小,占公司收入的比例不到6%。也就是说,摩尔线程虽然在技术路线中坚持“全功能GPU”,但在商业化层面,图形业务更多是生态与技术完整性的补充。

当然摩尔线程的收入结构也和英伟达类似,英伟达数据中心业务的收入占比整体也近90%。

而从客户群体来看,摩尔线程自2022年至2025年上半年,前五大客户收入占比分别为89.86%、97.45%、98.16%和98.29%。尤其在2025年1–6月,前两大客户合计贡献已超过87%的主营收入,其中单个客户贡献56.63%的营业额。这意味着,一旦核心客户采购节奏放缓、预算调整或项目终止,公司的收入与现金流将面临剧烈波动。

其次是客户类型高度工程化、项目化。从主要销售内容看,头部客户采购集中在AI智算集群设备、AI智算板卡,本质上是定制化或半定制化的算力项目交付。可以推断,摩尔线程当前的客户群体更多来源于以国产替代和合规交付为优先的信创市场。

相比华为、阿里都在用自研芯片,寒武纪拿下了大单,摩尔线程哪怕只想挤进国内同行的第一梯队,这样的商业基础也还远远不够。

3.不披露关键参数,如何担起“全村的希望”?

摩尔线程要想成为中国的希望,核心还是得解决产品和生态的问题。

在近日举办的MUSA开发者大会上,摩尔线程推出了全功能GPU架构“花港”,强调其支持从FP4到FP64的全精度计算,算力密度提升50%、能效大幅优化,并围绕该架构规划了面向AI训练与推理的一体化芯片“华山”,以及专攻高性能图形渲染的“庐山”芯片。

张建中展示了MTT S5000在DeepSeek R1 671B全量模型上的推理表现,给出Prefill吞吐4000tokens/s、Decode吞吐1000 tokens/s等数据,树立“国产推理新标杆”;在图形侧,则用“几何处理16倍、AI计算64倍、光追50倍”的跨代提升,来宣示“庐山”在3A游戏与专业渲染中的能力跃迁。

可惜的是,这几项核心产品并未给出关于算力、访存带宽、容量等关键数据,仅靠一张图表,隐晦地传达出“逼近英伟达B系列”的信号,就连张建中发布会现场将产品对标英伟达的大篇幅表述,也在大会结束后的两天被摩尔线程删除。2小时的发布会,最终仅留下10分钟的产品介绍切片。

要知道的是,英伟达Blackwell架构的芯片采用的是台积电4nm制程工艺,在被美国列入实体清单的情况下,摩尔线程只能依靠中芯国际。但中芯国际目前的工艺、产能和良率似乎还卡在7nm和5nm的阶段,这让人不禁疑问,在制程可能落后的情况下,摩尔线程要如何依靠架构实现对英伟达的逼近?

由于电力资源占据优势,单颗算力不及国外厂商,拿集群补短板,是国产GPU厂商更熟悉的路径,摩尔线程最新发布的“夸娥”万卡智算集群,算是披露参数较多的产品了。给出的核心指标包括:10 ExaFlops级浮点运算能力、Dense模型MFU 60%、MoE模型MFU 40%、训练线性扩展效率95%。但关于能耗、各算力精度下具体表现、高速互联情况,以及外界更为关心的实际落地进度,也均未给出数据。

然后就是最关键的生态。MUSA开发者大会上,摩尔线程也宣布了建设MUSA生态中心,并发布MUSA开发者计划,试图让更多人才加入生态共建。

根据IDC数据,2025年上半年中国GPU市场中,英伟达以62%的市场份额稳居第一,全年出货约119万片GPU;华为昇腾以17%位列第二,出货约33万片。而在国产GPU阵营中,昆仑芯出货5万片,天数智芯2.6万片,寒武纪5.2万片,沐曦2.9万片,摩尔线程仅6128片。

这一数量级差距,同样也代表着MUSA与CUDA之间的生态鸿沟。

CUDA的优势建立在百万级出货量、以及将近20年的时间积累之上——半年内约119万片GPU进入数据中心、云平台与开发者手中,使其在真实业务场景中被持续调用、调试和优化,框架厂商与工具链自然将CUDA作为第一适配目标,形成自我强化的正反馈。相比之下,摩尔线程仅6128片的出货规模,决定了MUSA主要运行在封闭、项目制的交付环境中,既难以覆盖足够多样的真实负载,也难以吸引第三方主动投入适配成本,其生态不可避免地停留在“被动兼容”的阶段。

从招股书看,摩尔线程的研发费用率达到了309.9%,但资金体量也还无法与国际大厂扳手腕,要迭代产品、驱动生态拓展,注定是个漫长的过程。

因此,讨论“摩尔线程能否成为中国的希望”,还为时尚早。若论当前担此期望者,或许更符合的是中芯国际。一个更现实的前提是:摩尔线程至少需要先在国内市场,具备与华为昇腾正面竞争的产品力、出货规模与生态影响力。但在此之前,摩尔线程至少应该对于关键信息的披露更加坦诚一些。

注:文/李彦,文章来源:壹览商业(公众号ID:yilanshangye ),本文为作者独立观点,不代表亿邦动力立场。

文章来源:壹览商业

广告
微信
朋友圈

这么好看,分享一下?

朋友圈 分享

APP内打开

+1
+1
微信好友 朋友圈 新浪微博 QQ空间
关闭
收藏成功
发送
/140 0