广告
加载中

金融业迎来AI应用爆发期 银行如何跑上大模型?

胡镤心 2024-08-06 17:12
胡镤心 2024/08/06 17:12

邦小白快读

EN
全文速览

金融业迎来AI应用爆发期,文章揭示银行AI应用的实操案例与挑战。

1. 交通银行与京东云合作,利用联邦建模技术圈选高金融意向客群,提升普惠金融精准性,实现有针对性的服务。

2. 某股份制银行采用数据驱动策略,多渠道触达客户(如手机银行、微信),并通过AB测试快速迭代,5个月内显著提升线上运营能力和AUM转化率。

3. 江南农商银行引入京东云言犀数字人客服,简化用户交互,自2018年起柜员数从1200减至400,业务量翻倍,释放人力资源用于高价值工作。

4. 招商银行应用离在线混部技术,提升GPU利用率50%,高效并行离线业务(数据分析)和在线业务(交易平台),优化系统性能。

智能化挑战包括IT系统升级,银行通过上云降低成本至原来的十分之一并提升交易峰值,但需应对数据安全和隐私保护问题。

AI在金融服务中重塑品牌策略和用户行为,推动消费趋势变化。

1. 品牌营销受用户行为影响,如交通银行基于京东云的高频客户偏好信息研究,实现精准客群圈选,提升服务普惠性和针对性,反映用户为中心的趋势。

2. 产品研发涉及数字化创新,江南农商银行的3D数字人客服解决了服务标准不一致问题,简化交互流程,启发品牌如何设计智能产品以提升用户体验。

3. 消费趋势转向多渠道触达,某银行从产品为中心转向用户为中心,利用手机银行等渠道满足用户需求,显示渠道建设的重要性。

银行与科技企业合作(如京东云)提供业务场景和落地经验,助力品牌应对数字化浪潮中用户行为观察变化。

政策支持和合作模式带来新机遇,提示风险与可学习点。

1. 政策解读表明国家目标到2025年实现金融产品和服务广泛普及,银行需抓住数字化转型机遇,但面临技术迭代和数据安全挑战。

2. 增长市场机会体现在合作方式上,如交通银行与京东云联合推动联邦建模技术,圈选高意向客群,提升普惠金融收益。

3. 事件应对措施包括AB测试和小步快跑迭代,某银行优化运营模式,短短5个月提升MAU和转化能力,展示精细化运营模式的可学习点。

风险提示涉及AI替代岗位(曾刚预测30%金融岗位被替代),需构建新核心能力;合作扶持如招商银行技术集成,带来高效解决方案。

AI技术启示产品生产和数字化推进,创造商业机会。

1. 产品生产需求涉及IT系统升级,某大型银行核心系统上云后成本降至原来的十分之一,交易峰值从7800笔升至3万笔,启发高效生产设计。

2. 商业机会源于数字化启示,如江南农商银行AI数字人客服减少人力投入,业务量翻倍,显示自动化在提升运营效率中的潜力。

3. 推进电商启示包括数据驱动方法,招商银行的离在线混部技术提高资源利用率50%,为工厂提供降本增效的模板。

合作案例(如建设银行存算分离技术降存储成本30%)凸显技术应用如何释放资源,但需应对数据存储难题等挑战。

行业趋势和新技术解决客户痛点,提供针对性方案。

1. 行业发展趋势显示AI应用爆发,麦肯锡报告指出大模型可提升银行业营收2.8-4.7%,但面临数据安全等痛点。

2. 新技术如存算分离(建设银行案例降存储成本30%)和离在线混部(招商银行提升GPU利用率50%),解决存储扩展性和系统性能问题。

3. 解决方案包括联邦建模技术(交通银行案例)和数字人客服(江南农商银行),简化客户服务流程,提升运营效率。

客户痛点如IT系统笨重,银行上云优化支撑业务转型,服务商可从中汲取创新实践。

平台需求凸显合作和运营优化,规避风向风险。

1. 商业对平台需求如云服务支持,某大型银行上云后成本降低,可支持十亿级客户规模,显示平台在支撑海量用户中的关键作用。

2. 平台最新做法包括京东云与交通银行合作数据建模,提供高频客户偏好信息,助力客群精准圈选,并实现多渠道触达运营。

3. 运营管理优化涉及AB测试和快速迭代,某银行提升MAU转化能力;招商银行混部技术提高资源利用率,平台需加强招商和合作。

风向规避如数据隐私保护挑战,需通过技术合作(如京东云输出经验)确保合规运营。

产业新动向和政策启示揭示商业模式演变。

1. 产业新动向显示AI深入金融场景,曾刚预测30%金融岗位被替代,但带来质变;银行分类型路径(大行重安全,中小行追赶)提供研究焦点。

2. 新问题包括数据安全、存储挑战(百亿级文件处理),建设银行案例用存算分离降成本30%,提出政策法规建议需强化数据治理。

3. 商业模式如合作模式(银行与京东云)推动数字化转型,案例显示从产品为中心转向用户为中心,引发普惠金融和效率提升研究启示。

政策目标到2025年金融创新有序实践,激发产业价值创造和创新突破研究。

返回默认

声明:快读内容全程由AI生成,请注意甄别信息。如您发现问题,请发送邮件至 run@ebrun.com 。

我是 品牌商 卖家 工厂 服务商 平台商 研究者 帮我再读一遍。

Quick Summary

The financial industry is entering a period of explosive AI application growth, with the article revealing practical case studies and challenges in banking AI implementations.

1. Bank of Communications collaborated with JD Cloud, utilizing federated modeling technology to identify high-intent customer segments, improving the precision of inclusive finance and enabling more targeted services.

2. A joint-stock bank adopted a data-driven strategy, reaching customers through multiple channels (e.g., mobile banking, WeChat), and used A/B testing for rapid iteration, significantly enhancing its online operational capabilities and AUM conversion rate within five months.

3. Jiangnan Rural Commercial Bank introduced JD Cloud's YANXI digital human customer service, simplifying user interactions. Since 2018, the number of tellers has been reduced from 1,200 to 400 while business volume doubled, freeing up human resources for higher-value work.

4. China Merchants Bank applied hybrid offline-online deployment technology, increasing GPU utilization by 50%, efficiently running offline tasks (data analysis) and online services (trading platforms) in parallel to optimize system performance.

Challenges in intelligent transformation include IT system upgrades. Banks have reduced costs to one-tenth of the original and increased transaction peaks by migrating to the cloud, but must address data security and privacy protection issues.

AI is reshaping brand strategies and user behavior in financial services, driving shifts in consumer trends.

1. Brand marketing is influenced by user behavior. For example, Bank of Communications' research on high-frequency customer preferences with JD Cloud enables precise customer segmentation, reflecting a user-centric trend and improving service inclusivity and targeting.

2. Product development involves digital innovation. Jiangnan Rural Commercial Bank's 3D digital human customer service addresses inconsistent service standards and simplifies interaction flows, offering insights for brands on designing intelligent products to enhance user experience.

3. Consumption trends are shifting towards multi-channel engagement. A bank's transition from product-centric to user-centric approaches, utilizing channels like mobile banking, highlights the importance of channel development in meeting user needs.

Collaborations between banks and tech firms (e.g., JD Cloud) provide business scenarios and implementation experience, helping brands adapt to evolving user behavior in the digital wave.

Policy support and partnership models create new opportunities, highlighting risks and learnings.

1. Policy interpretation indicates a national target for widespread adoption of financial products and services by 2025. Banks must seize digital transformation opportunities but face challenges like technological iteration and data security.

2. Growth market opportunities are evident in collaboration models. For instance, the partnership between Bank of Communications and JD Cloud in federated modeling technology helps identify high-intent customer segments, boosting inclusive financial returns.

3. Event response measures include A/B testing and rapid iteration. One bank optimized its operational model, significantly improving MAU and conversion capabilities within five months, demonstrating learnings in refined operations.

Risk warnings involve AI potentially replacing 30% of financial jobs (as predicted by Zeng Gang), necessitating the development of new core competencies. Supportive collaborations, like China Merchants Bank's technology integration, offer efficient solutions.

AI technology offers insights for product manufacturing and digital advancement, creating business opportunities.

1. Product manufacturing demands include IT system upgrades. After migrating its core systems to the cloud, a large bank reduced costs to one-tenth and increased transaction peaks from 7,800 to 30,000 transactions, inspiring efficient production design.

2. Business opportunities arise from digital insights. For example, Jiangnan Rural Commercial Bank's AI digital human customer service reduced labor input while doubling business volume, showcasing the potential of automation in enhancing operational efficiency.

3. E-commerce inspirations include data-driven methods. China Merchants Bank's hybrid offline-online deployment technology improved resource utilization by 50%, providing a template for factories to reduce costs and increase efficiency.

Collaboration cases, such as China Construction Bank's use of compute-storage separation to cut storage costs by 30%, highlight how technology applications can free up resources, though challenges like data storage issues must be addressed.

Industry trends and new technologies address client pain points, offering targeted solutions.

1. Industry development trends show an AI application boom. A McKinsey report indicates that large models could increase banking revenue by 2.8-4.7%, but challenges like data security remain.

2. New technologies, such as compute-storage separation (reducing storage costs by 30% at China Construction Bank) and hybrid offline-online deployment (boosting GPU utilization by 50% at China Merchants Bank), address issues like storage scalability and system performance.

3. Solutions include federated modeling technology (Bank of Communications case) and digital human customer service (Jiangnan Rural Commercial Bank), which streamline client service processes and enhance operational efficiency.

Client pain points, such as cumbersome IT systems, are addressed through cloud migration, supporting business transformation. Service providers can draw innovative practices from these cases.

Platform demands highlight the need for collaboration and operational optimization to mitigate risks.

1. Commercial platform demands include cloud service support. After migrating to the cloud, a large bank reduced costs and gained the ability to support billions of customers, underscoring platforms' critical role in handling massive user scales.

2. Latest platform practices involve collaborations like JD Cloud and Bank of Communications' data modeling, which provides high-frequency customer preference data to aid precise customer segmentation and multi-channel engagement operations.

3. Operational management optimization includes A/B testing and rapid iteration, as seen in one bank's improved MAU conversion capabilities. China Merchants Bank's hybrid deployment technology enhances resource utilization, emphasizing the need for platforms to strengthen partnerships and recruitment.

Risk mitigation, such as addressing data privacy challenges, requires technical collaborations (e.g., JD Cloud's expertise sharing) to ensure compliant operations.

Industry developments and policy insights reveal evolving business models.

1. Industry trends show AI's deep integration into financial scenarios. Zeng Gang predicts AI could replace 30% of financial jobs but also drive qualitative changes. Differentiated paths among banks (large banks focus on security, while smaller banks catch up) offer research focal points.

2. Emerging issues include data security and storage challenges (e.g., handling tens of billions of files). China Construction Bank's use of compute-storage separation reduced costs by 30%, suggesting that policy and regulatory recommendations should strengthen data governance.

3. Business models, such as bank-tech partnerships (e.g., with JD Cloud), drive digital transformation. Cases illustrate a shift from product-centric to user-centric approaches, offering research insights into inclusive finance and efficiency gains.

Policy targets for orderly financial innovation by 2025 are stimulating industry value creation and research into innovative breakthroughs.

Disclaimer: The "Quick Summary" content is entirely generated by AI. Please exercise discretion when interpreting the information. For issues or corrections, please email run@ebrun.com .

I am a Brand Seller Factory Service Provider Marketplace Seller Researcher Read it again.

随着3D智能交互数字员工的上岗、AI贷前调查报告的快速生成,以及债券智能助手在提升运营效率上的卓越表现,金融行业正迎来大模型应用的爆发期。国家政策更是为银行业保险业的数字化转型指明了方向,旨在到2025年实现金融产品和服务方式的广泛普及和金融创新的有序实践。

然而,银行业“跑上大模型”的道路上并非一帆风顺。

技术的快速迭代要求银行不断更新系统和培养人才,同时,数据安全和隐私保护问题也成为智能化过程中不可忽视的挑战。这些焦虑的源头,正是银行业在追求创新与保障安全之间的微妙平衡。

在刚刚过去的2024京东云峰会上,来自金融行业专家以及金融机构的技术负责人,分享了他们对于银行与大模型技术结合的见解。上海金融实验室主任、首席专家曾刚预测, 未来有相当数量的金融岗位可能会被人工智能所替代掉,银行应该尽快构建新核心能力,实现高质量发展。

曾刚认为,不同类型的银行应选择适合自己的数字化路径。国有大行可能更注重安全性和技术要求,而中小型银行则需要在资源有限的情况下追赶数字化浪潮。

此外,银行与科技企业的合作变得尤为关键,尤其是与像京东云这样的头部科技公司合作,可以为银行提供技术输出和业务场景。

1、AI与场景的碰撞

现实的确如此。AI在金融行业潜力巨大,麦肯锡2023年报告显示,全球银行业使用大模型可使其每年营收提高2.8-4.7%。所以,与在特定场景有落地经验的公司联合,有助于银行避免不必要的试错,直接从成熟的技术应用中受益。

比如,交通银行与京东云推动大数据合作,后者不仅拥有丰富的场景落地经验,还具备金融业务的深厚背景。

交通银行总行网金数据应用部副高级经理杨晓春在2024京东云峰会上发表主题演讲时表示,通过分享京东云的高频客户行为偏好信息研究成果,利用联邦建模技术,交通银行成功圈选出具有高金融意向的客群,为客户提供更加有针对性的金融服务,凸显普惠金融的普适性和精准性。

面对线上运营和MAU增长的双重挑战,某全国性股份制商业银行总行网络金融运营项目负责人表示,该银行携手京东云通过数据驱动、技术创新和用户为中心的策略,重构了数字化运营模式。

银行突破传统渠道限制,利用手机银行、微信、网上银行等多渠道触达客户,实现了从“产品为中心”到“用户为中心”的转变。

另外,以上提到的某全国性股份制商业银行总行还采取了小步快跑、快速迭代的方法,通过AB测试和数据监测,实现了精细化运营和客户高效转化。短短5个月内,该银行的线上运营能力显著提升,MAU和AUM转化能力得到加强,彰显了数字化转型在提升银行竞争力中的关键作用。

江南农商银行CIO杨凯在2024京东云峰会上介绍了京东云言犀数字人如何助力远程银行发展。

他说,面对远程银行客服培训周期长、服务标准不一致的挑战,江南农商银行与京东云合作,引入AI数字人,借助言犀平台,实现了3D数字人客服,简化了用户交互流程。自2018年起,银行柜员数量从1200减至400,业务量和资产规模却翻倍增长,显著提升了运营效率。

这一转型不仅减轻了客服工作量,还促进了网点功能转变,释放了人力资源,投入到更高价值的营销和服务工作中,展现了数字化转型在金融服务革新中的巨大潜力。

2、智能化的机会与挑战

作为对信息技术依赖度最高的行业之一,银行的日常运营、风险管理、客户服务都需要依托底层IT系统。但银行自身IT资产较重,做大规模系统升级较难。为了适应人工智能的发展,银行业就需要通过引入先进技术帮助IT系统降本增效,更好支撑上层业务的数字化转型。

以某大型银行为例,该银行原先依赖于IOE架构,但这种架构难以支撑海量用户通过多种线上渠道使用服务,且每月需支付高达两三千万的系统维护费用。

银行核心系统上云之后,不仅系统成本大幅降低至原来的十分之一,系统的每秒交易峰值也从之前的7800笔上升至3万笔。如今新系统足以支持十亿级客户规模,客户体验及服务质量提升很大。

招商银行在面对自身庞大的IT资产和系统升级挑战时,就采取了一种创新的成本效益策略。通过京东云提供的离在线混部技术,招商银行能够在相同的物理或虚拟资源上,高效地并行运行“离线”业务(如数据分析和报告生成)和“在线”业务(如网上银行和交易平台),显著提高了GPU利用率,达到了50%的提升。

3、金融业的未来与挑战

另外,大模型训练过程中,面临着数据难题。

由于训练文件数量达到百亿级别,传统的存储系统在可扩展性和对多种文件类型及数据格式的支持,显得力不从心。

为了解决这一问题,中国建设银行与京东云合作,采用了高性能的存算分离技术,不仅满足了大模型训练的高性能存储需求,还成功降低了30%的存储成本。

随着AI逐渐深入场景,银行业的未来充满了无限可能。

正如曾刚所言,30%的金融行业岗位可能会被AI替代,但这并不意味着银行业的衰退,而是一次质的飞跃。

银行与科技企业的紧密合作,不仅能够释放数字化转型的焦虑,更能够开启金融行业的新篇章。在这个过程中,金融行业也更加期待看到更多的创新实践,更多的技术突破,以及更多的价值创造。


文章来源:亿邦动力

广告
微信
朋友圈

这么好看,分享一下?

朋友圈 分享

APP内打开

+1
+1
微信好友 朋友圈 新浪微博 QQ空间
关闭
收藏成功
发送
/140 0